

aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding

PNEUDRI Compressed Air Desiccant Dryers

ENGINEERING YOUR SUCCESS.

Moisture is a big problem for compressed air users

Moisture is one of the major contaminants in compressed air systems. It occurs because water vapour present in the atmosphere is drawn into the compressor, where its' concentration can rise dramatically as temperature increases. Of the ten contaminants commonly found in a compressed air system, water vapour, liquid water and aerosols account for the majority of problems experienced by the compressed air user.

Unseen water vapour condenses into liquid water

Large volumes of atmospheric air enter the compressed air system through the compressor intake. As the air is compressed, its temperature increases significantly, causing it to become fully saturated with water vapour. Water vapour retention in air is dependent upon its temperature and pressure; the higher the temperature, the more water vapour that can be retained; the higher the pressure, the greater the amount of condensed water that will be released.

After the compression stage, the now saturated air is cooled to a usable temperature by an aftercooler, causing the retained water vapour to be condensed into liquid water which is then removed by a condensate drain. The air leaving the aftercooler is now 100% saturated with water vapour. As the compressed air moves downstream to storage vessels and through piping, its temperature falls and concentrated vapour will sublimate as droplets of liquid water.

If not removed, this will cause corrosion of the distribution system, blocked or frozen valves and machinery, as well as providing an ideal breading ground for micro-organisms and bacteria.

To eliminate these moisture problems, all viable water vapour must be removed by adsorption dryers, before it can enter the compressed air system.

How much water can be found in a typical compressed air system?

The amount of water in a compressed air system is staggering. A small 2.8m³/min (100 cfm) compressor and refrigeration dryer combination, operating for 4000 hours in typical Northern European climatic conditions can produce approximately 10,000 litres or 2,200 gallons of liquid condensate per year.

Oil is often perceived to be the most prolific contaminant as it is can be seen emanating from open drain points and exhausting valves. In the majority of instances, it is actually oily condensate (oil mixed with water) that is being observed. In reality, oil accounts for less than 0.1% of the overall volume.

This example illustrates the use of a small compressor to highlight the large volume of condensate produced. Up to 99.9% of the total liquid contamination found in a compressed air system is water.

If a compressed air system was operated in warmer, more humid climates, with larger compressors, or run for longer periods, the volume of condensate would increase significantly.

99.9% of the total liquid contamination in a compressed air system is water.

PNEUDRI modular compressed air dryers a dedicated solution for every application

By combining the proven benefits of desiccant drying with modern design, Parker domnick hunter has produced an extremely compact and reliable system to totally dry and clean compressed air.

PNEUDRI MiDAS Flowrates from 5.1m³/hr >

PNEUDRI DH MAXI Flowrates from 238m³/hr >

PNEUDRI MIDIplus Flowrates from 49m³/hr >

PNEUDRI MPX Flowrates from 2346m³/hr >

PNEUDRI MX Flowrates from 408m³/hr >

The Parker domnick hunter PNEUDRI ranges of heatless and heat regenerative dryers have proven to be the ideal solution for many thousands of compressed air users worldwide in a wide variety of industries. Compressed air purification equipment must deliver

uncompromising performance and reliability whilst providing the right balance of air quality with the lowest cost of operation.

Benefits:

Highest quality air

- Clean, oil-free and dry compressed air in accordance with all editions of ISO8573-1, the international standard for compressed air quality

Energy efficient

- Giving maximum savings

Dry air eliminates microbiological growth - Preventing product spoilage, recall and litigation

Dry air means zero corrosion

Preventing product spoilage and damage

Smaller, more compact and lightweight

- Modular construction means less than half the size of conventional dryers

Modular design

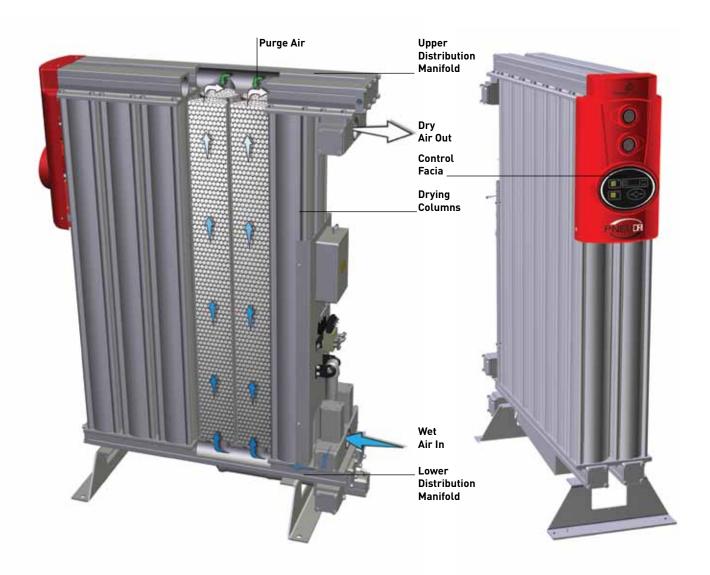
- 100% standby at a fraction of the cost of twin tower designs
- 10 year guarantee on pressure envelope
- Corrosion resistance due to alochroming and epoxy painting
- Constant dewpoint performance thanks to snowstorm filling

Approvals to international standards

- PED, CE, CSA (US+Canada), CRN
- Easy and flexible installation - Minimal space required

Simple maintenance

- Giving reduced downtime


Reduced noise pollution

- Super quiet operation

Clean, dry air improves production efficiency and reduces maintenance costs and downtime. Only an adsorption dryer can provide the highest levels of dry compressed air.

PNEUDRI - How it works

PNEUDRI comprises of high tensile extruded aluminium columns each containing twin chambers filled with desiccant material which dries the compressed air as it passes through.

One chamber is operational (drying), while the opposite chamber is regenerating using either the Pressure Swing Adsorption (PSA) (heatless) or Thermal Swing Adsorption (TSA) (heat regenerative) method of drying.

A small volume of the dried compressed air is used to regenerate the saturated desiccant bed by expanding air from line pressure to atmospheric pressure, removing the water vapour adsorbed by the desiccant material, and therefore regenerating the dryer. Heat regenerative models have electric heaters built into the desiccant beds to further reduce purge air consumption and increase operating efficiency.

Modular design eliminates the need for complex valves and interconnecting piping which are used in conventional twin tower designs.

PNEUDRI - The world's most advanced modular drying system


With the proven benefit of advanced aluminium forming technology, Parker domnick hunter has developed a twin tower desiccant dryer that is typically 60% of the size and weight of conventional designs.

These advanced desiccant dryers include ranges of heatless and heat-regenerative PNEUDRI dryers which provide one of the most simple and cost effective compressed air drying solutions. Engineers at Parker domnick hunter have developed PNEUDRI using innovative aluminium forming technology, resulting in units that are typically 60% of the size and weight of conventional welded steel desiccant air dryers. Using a single, high tensile extruded aluminium column, the PNEUDRI modular design eliminates the need for complex valves or interconnecting piping.

Also, the length to diameter ratio of the internal voids and non-welded construction means that PNEUDRI does not require periodic inspections for insurance purposes, unlike traditional twin-tower air dryers that require out of service periods which can severely disrupt production schedules.

Drying Columns

Distribution Manifold

Greater flexibility with multi-banking

Multi-banking

Unlike traditional twin tower dryer designs, PNEUDRI MAXI models can be multi-banked to provide extra compressed air drying capacity should demand increase in the future. There is no need to replace the dryer with a larger unit, additional capacity can be covered by simply adding extra bank(s), a feature only available with PNEUDRI.

Flexibility during maintenance Multi-banking allows individual dryer banks to be easily isolated for routine

banks to be easily isolated for routine service work, whilst maintaining your clean, dry air supply.

100% stand-by

Compared to traditional twin tower designs, 100% standby is available at a fraction of the cost as only one extra dryer bank is required.

Fits through a standard doorway Unlike traditional twin tower designs, PNEUDRI dryers will fit through a standard doorway, eliminating the need for special access or facility structural dismantling during installation.

PNEUDRI - four key features guarantee air quality

OIL-X EVOLUTION filtration

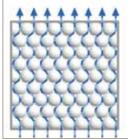
Adsorption dryers are designed for the removal of water vapour and not liquid water, water aerosols, oil, particulates or micro-organisms. Only by using Parker domnick hunter OIL-X EVOLUTION pre and after filtration can the removal of these contaminants be assured and air quality in accordance with all editions of ISO8573-1 be guaranteed.

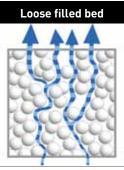
Modular aluminium design

Aluminium extrusions are used throughout for drying chambers and distribution manifolds. This design allows the desiccant material to be retained within the drying chambers.'Snowstorm' filling, prevents movement of the desiccant material during operation and also eliminates desiccant attrition and breakdown which could lead to a loss of pressure dewpoint.

Adsorbent desiccant material

Specially selected desiccant materials provide:


- Optimum adsorption and regeneration capacity to ensure consistent dewpoint
- · Low dusting to prevent blockage of downstream filtration
- · High crush strength to prevent breakdown of the desiccant during operation
- High resistance to aggressive and oil-free condensate for compatibility with all types of air compressor, their lubricants and condensate



'Snowstorm' filling ensures consistent dewpoint performance

Snowstorm filled bed

Consistent drying with no desiccant attrition

Inconsistent drying and desiccant attrition

'Snowstorm' filling method

Unique to Parker domnick hunter modular dryers is the snowstorm filling technique used to charge the drying chambers with adsorbent desiccant material. The benefits are:

- Achieves maximum packing density for the desiccant material, fully utilising all of the available space envelope
- Prevents air channelling through the desiccant as experienced with twin tower designs. Due to channelling, twin tower designs require more desiccant to achieve an identical dewpoint, increasing physical size, operational and maintenance costs
- Prevents desiccant attrition which can lead to dusting, blocked filters and loss of dewpoint
- Allows 100% of the available desiccant material to be used for drying, therefore reducing the amount of desiccant required and maintenance costs
- 100% of the desiccant is regenerated ensuring consistent dewpoint
- Provides a low, equal resistance to air flow allowing multiple drying chambers and multiple dryer banks to be used, a feature only available with PNEUDRI

What air quality do I need?

The compressed air PDP should not only be selected to prevent condensation and freezing in the piping, consideration must also be given to the requirements of the application.

Typically, refrigeration dryers are employed for general purpose plant air. However, a significant amount of water vapour still remains in the compressed air, much more than is tolerable for most applications (air after an adsorption dryer with -40°C Pressure Dew Point (PDP) is around 60 times dryer than air after a refrigeration dryer with a +3°C PDP). Many critical applications require a PDP well below those offered by refrigeration

dryers, for example, compressed air with a PDP better than -26°C will inhibit growth of micro-organisms, which is well beyond the capabilities of a refrigeration dryer. Preventing the growth of these microbiological contaminants is crucial to industries such as food, beverage, pharmaceutical, medical, dental, electronics, cosmetics and any application where compressed air is used to provide breathable air.

The quality of air required throughout a typical compressed air system will vary depending upon the application for which it is used.

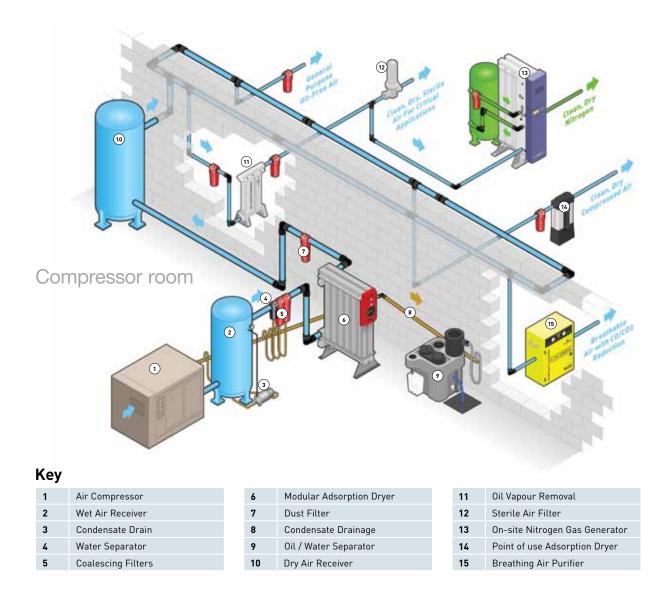
Critical Applications Pharmaceutical products Silicon wafer manufacturing TFT / LCD screen manufacturing Memory device manufacturing Optical storage devices (CD, CD/RW, DVD, DVD/RW) Optical disk manufacturing (CD's/DVD's) Hard disk manufacturing Foodstuffs Dairies Breweries CDA systems for electronics manufacturing

For ultra-critical applications which require the driest possible air, -70°C PDP must be specified.

High Quality Oil-Free Air Blow moulding of plastics e.g. P.E.T. bottles Film processing **Critical instrumentation** Advanced pneumatics Air blast circuit breakers **Decompression chambers Cosmetic production** Medical air **Dental air Robotics** Spray painting Air bearings **Measuring equipment** Pre-treatment for on-site gas generation

General Purpose Oil-Free Air General ring main protection **Plant automation** Air logistics Pneumatic tools **General instrumentation** Metal stamping Forging General manufacturing (no external piping) Air conveying Air motors Workshop (tools) **Temperature control systems** Blow guns **Gauging equipment Raw material mixing** Sand / bead blasting Yard air

Selecting the right dryer for your compressed air system

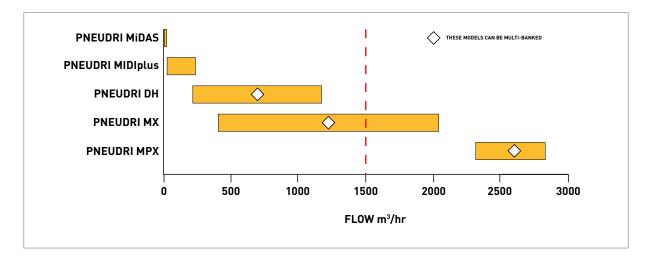

To achieve the degree of air quality specified by ISO8573-1:2010, a careful approach to system design, commissioning and operation must be adopted.

Parker domnick hunter recommends that compressed air is treated:

- Prior to entry into the distribution system
- At critical usage points and applications

This ensures that contamination already in the distribution system is removed.

Purification equipment should be installed where the air is at the lowest possible temperature (i.e. downstream of after-coolers and air receivers). Point-of-use purification equipment should be installed as close as possible to the application.


What size PNEUDRI do I require?

Dryer Selection

To correctly select a dryer model, the flow rate of the dryer must be adjusted for the minimum operating pressure and maximum operational temperature of the system. If the dewpoint required is different to the standard dewpoint of the dryer then the flow rate must also be adjusted for the required outlet dewpoint.

Selection Example

Selecting a dryer for a compressor producing at full load 1500 m 3 /hr at 8.3 bar g with 38°C air inlet temperature and a pressure dewpoint of -40°C.

Step 1

Select the correction factor for maximum inlet temperature from the CFT table Correction Factor for 38° C (round up to 40° C) = 1.04

Temperature Correction Factor CFT							
	°C	40					
Maximum Inlet Temperature	°F	104					
	CFT	1.04					

bar g

psi g

CFP

PDP °C

PDP °F

CFD

8

116

0.89

-40

-40

1.00

Pressure Correction Factor CFP

Dewpoint Correction Factor CFD

Minimum

Required

Dewpoint

Inlet Pressure

Step 2

Select the correction factor for minimum operating pressure from the CFP table Correction Factor for 8.3 bar g (round down to 8 bar g) = 0.89

Step 3

Select the correction factor for the required dewpoint from the CFD table Correction Factor for -40°C PDP = 1.00

Step 4

Calculate the minimum drying capacity

 $\begin{array}{l} \mbox{Minimum drying capacity} = \mbox{Compressed air flow rate x CFT x CFP x CFD} \\ \mbox{Minimum drying capacity} = 1500 \ m^3/\mbox{hr x } 1.04 \ x \ 0.89 \ x \ 1.00 = 1388 \ m^3/\mbox{hr} \\ \mbox{Model selected} = \mbox{MX106} \\ \end{array}$

Step 5

Which controller is required?

SMART controller is required therefore model selected = MXS106

Step 6

Is DDS Energy Management System required?

DDS Energy Management system is required therefore model selected = MXS106DS

If the minimum drying capacity exceeds the maximum values of the models shown within the tables, please contact Parker domnick hunter for advice regarding larger multi-banked dryers.

PNEUDRI MIDAS

Product Selection

Model	Pipe Size		Inlet Flowrates						
Woder	Fipe Size	L/S	m³/min	m³/hr	cfm				
DAS1	G ³ / ₈	1	0.09	5.1	3				
DAS2	G ³ / ₈	2	0.14	8.5	5				
DAS3	G ³ / ₈	4	0.23	13.6	8				
DAS4	G ³ / ₈	5	0.28	17.0	10				
DAS5	G ³ / ₈	6	0.37	22.1	13				
DAS6	G ³ / ₈	7	0.43	25.5	15				
DAS7	G ³ /8	9	0.57	34.0	20				

Stated flows are for operation at 7 bar g (100 psi g) with reference to 20°C, 1 bar a, 0% relative water vapour pressure. For flows at other pressures, apply the correction factors shown.

Dryer Performance

	*Dewpoin	it (Standard)	ISO8573-1:2010	*Dewpoin	t (Option 1)	ISO8573-1:2010 Classification	
Dryer Models	°C	°F	Classification (standard)	°C	°F	(Option 1)	
DAS	-40	-40	Class 2	-70	-100	Class 1	

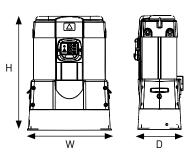
Technical Data

Dryer	Min Operating Pressure		Ма	Max Operating Pressure Te				Max Inlet emperature		
Models	bar g	psi g	bar g	psi g	°C	°F	°C	°F	°C	°F
DAS	4	58	12	175	2	35	50	122	55	131

Dryer	Electrical Supply (Standard)	Electrical Supply (Optional)	Thread	Noise Level (average)	Electronic Controller	Fu	Inction
Models	Tolerance ± 10%	Tolerance ± 10%	Connection	dB(A)	Options	Power On Indication	Service Interval Indication
DAS	230 / 1ph / 50Hz	115 / 1ph / 60Hz	BSPP or NPT	<75	DAS	•	•

For fully pneumatic applications, a PNEUDRI MINI range is available. Please contact Parker domnick hunter for furthe<u>r information</u>.

Temperature Correction Factor CFT									
	°C	25	30	35	40	45	50		
Maximum Inlet Temperature	°F	77	86	95	104	113	122		
	CFT	1.00	1.00	1.00	1.04	1.14	1.37		
Pressure Correc	ction Factor	CFP							


	bar g	4	5	6	7	8	9	10	11	12
Minimum Inlet Pressure	psi g	58	73	87	102	116	131	145	160	174
	CFP	1.60	1.33	1.14	1.00	1.03	0.93	0.85	0.78	0.71

Dewpoint Corre	ction Factor CFD	Standard	Option 1
Required Dewpoint	PDP °C	-40	-70
	PDP °F	-40	-100
	CFD	1.00	1.43

Weights and Dimensions

			Dimensions							Weight	
Model		Pipe Size	Height (H)		Widt	h (W)	Dept	:h (D)	weight		
			mm	ins	mm	ins	mm	ins	Kg	lbs	
	DAS1	G ³ /8	422	16.6	289	11.4	149	5.9	11	24.2	
	DAS2	G ³ /8	500	19.7	289	11.4	149	5.9	13	28.7	
	DAS3	G ³ /8	616	24.2	289	11.4	149	5.9	16	35.3	
	DAS4	G ³ /8	692	27.2	289	11.4	149	5.9	18	39.7	
	DAS5	G ³ /8	847	33.3	289	11.4	149	5.9	20	44.1	
	DAS6	G ³ /8	906	35.7	289	11.4	149	5.9	23	50.7	
	DAS7	G ³ /8	1098	43.2	289	11.4	149	5.9	28	61.7	

DAS1-7

Recommended Filtration

Model	Filter Pipe Size BSPT or NPT	Inlet General Purpose Pre-filter	Inlet High Efficiency Filter	Outlet Dust Filter
DAS1	3/8"	AO005B 🗆 FX	N/A*	N/A*
DAS2	³ /8"	AO005B 🗌 FX	N/A*	N/A*
DAS3	³ /8"	AO005B 🗆 FX	N/A*	N/A*
DAS4	3/8"	AO005B 🗆 FX	N/A*	N/A*
DAS5	3/8"	AO005B 🗆 FX	N/A*	N/A*
DAS6	³ /8"	AO0010B 🗆 FX	N/A*	N/A*
DAS7	3/8"	AO0010B 🗆 FX	N/A*	N/A*

 $^{\ast}\mbox{MiDAS}$ dryers include integral high efficiency pre and general purpose dust filters.

= B (BSPT) or N (NPT)

PNEUDRI MIDIplus

Product Selection

Madal	Pipe Size		Inlet Flo	wrates	
Model	Pipe Size	L/S	m³/min	m³/hr	cfm
DME012	G ³ / ₄	11	0.68	41	24
DME015	G ³ / ₄	15	0.91	55	32
DME020	G ³ / ₄	20	1.19	71	42
DME025	G ³ / ₄	25	1.50	90	53
DME030	G ³ / ₄	31	1.84	110	65
DME040	G ³ / ₄	42	2.49	149	88
DME050	G1	50	3.01	180	106
DME060	G1	61	3.69	221	130
DME080	G1	83	4.99	299	176

Stated flows are for operation at 7 bar g (100 psi g) with reference to 20°C, 1 bar a, 0% relative water vapour pressure. For flows at other pressures, apply the correction factors shown.

Dryer Performance

Dryer Models	Dewpoin	t (Standard)	ISO8573-1:2010	Dewpoin	t (Option 1)	ISO8573-1:2010
Dryer wodels	°C	°F	Classification (standard)	°C	°F	Classification (Option 1)
DME	-40	-40	Class 2	-70	-100	Class 1
DMP*	-40	-40	Class 2	-70	-100	Class 1

Technical Data

Dryer Models	Min Opera Pres				Min Operating Temperature		Max Operating Temperature			mbient erature	Electrical Supply	Electrical Supply	Thread	Noise Level
Diyel Models	bar g	psi g	bar g	psi g	°C	°F	°C	°F	°C	°F	(Standard)	(Optional)	Connection	dB(A)
DME012 - DME040	4	58	16	232	2	35	50	122	55	131	230V 1ph 50/60Hz	110V 1ph 50/60Hz	BSPP or NPT	<75
DME050 - DME080	4	58	13	190	2	35	50	122	55	131	230V 1ph 50/60Hz	110V 1ph 50/60Hz	BSPP or NPT	<75
DMP12P - DMP80P*	4	58	10.5	152	2	35	50	122	55	131	FULLY	PNEUMATIC	BSPP or NPT	<75

Controller Options

		Function												
Controller Options	Power On Indication	Fault Indication	Display Fault Condition Values	Service Interval Indication	Service Contdown Timers	Configurable Alarm Settings	Remote Volt Free Alarm contacts	Filter Service Timer	DDS Energy Management System					
DME (Electronic control)	•	•					•							
DME DDS	•	•					•		•					

*ATEX compliant option available.

For hazardous environments, a fully pneumatic ATEX compliant version of PNEUDRI is available.

ATEX Directive 94/9/EC Group II, Category 2GD, T6.

Temperature Correction Factor CFT														
	°C	25			30		35			40		45		50
Maximum Inlet Temperature	°F		77		86		95		104			113	122	
	CFT	1.00			1.00		1	.00		1.04		1.14		1.37
Pressure Correction Factor CFP														
	bar g	4	5	6	7	8	9	10	11	12	13	14	15	16
Minimum Inlet Pressure	psi g	58	73	87	100	116	131	145	160	174	189	203	218	232
	CFP	1.60	1.33	1.14	1.00	0.89	0.80	0.73	0.67	0.62	0.57	0.54	0.5	0.47
		Г										Models	s 012 - 04	0 only
Dewpoint Correction Factor CFD Stand				ard	Optio	on 1								
	PDP °C			-40		-70								
Required Dewpoint	PDP °F			-40	-100									

Weights and Dimensions

CFD

	Pipe			Dimer	nsions						ME 012	- 040 a re a
Model	Size	Heigh	nt (H)	Widtl	h (W)	Dept	:h (D)	Wei	ight			
	Outlet	mm	ins	mm	ins	mm	ins	kg	lbs	Н	00	
DME012	G ³ / ₄	837	33.0	284	11.2	302	11.9	32	70			
DME015	G ³ / ₄	1003	39.5	284	11.2	302	11.9	37	81	\ ∙]	↓ →
DME020	G ³ / ₄	1168	46.0	284	11.2	302	11.9	42	92			D 50 - 080
DME025	G ³ / ₄	1333	52.5	284	11.2	302	11.9	47	103	Ť		- 000 000
DME030	G ³ / ₄	1499	59.0	284	11.2	302	11.9	52	114			
DME040	G ³ / ₄	1747	68.8	284	11.2	302	11.9	60	132	н		
DME050	G 1	1433	56.4	220	8.7	566	22.3	80	176	ĺ	00	
DME060	G 1	1599	63.0	220	8.7	566	22.3	90	198	ľ		
DME080	G 1	1847	72.7	220	8.7	566	22.3	104	229	Г	W	D

1.43

1.00

Recommended Filtration

For Dryer Model	Filter Pipe Size BSPT or NPT	Inlet General Purpose Pre-filter	Inlet High Efficiency Filter	Outlet Dust Filter
DME012	³ /4"	AO020D FX	AA020D 🗆 FX	AR020D I MX
DME015	³ /4"	AO020D 🗆 FX	AA020D 🗆 FX	AR020D MX
DME020	³ /4"	AO020D FX	AA020D 🗆 FX	AR020D II MX
DME025	³ /4"	AO020D FX	AA020D 🗆 FX	AR020D II MX
DME030	³ /4"	AO020D FX	AA020D 🗆 FX	AR020D MX
DME040	³ /4"	AO025D	AA025D 🗆 FX	AR025D MX
DME050	1"	AO025E 🗆 FX	AA025E 🗆 FX	AR025E I MX
DME060	1"	AO030E 🗆 FX	AA030E 🗆 FX	AR030E MX
DME080	1"	AO030E 🗆 FX	AA030E 🗆 FX	AR030E MX

= B (BSPT) or N (NPT)

PNEUDRI DH

Product Selection

	Model	Pipe Size		Inlet Flo	wrates	
	Woder	Pipe Size	L/S	m³/min	m³/hr	cfm
Bank	DH 🗆 102	G 2	66	3.97	238	140
Single I	DH 🗆 104	G 2	132	7.95	476	280
Sin	DH 🗆 106	G 21/2	198	11.92	714	420
	DH 🗆 108	G 21/2	264	15.88	951	560
	DH 🗆 110	G 21/2	330	19.86	1189	700
	2 x DH 🗆 108	G 21/2	528	31.76	1902	1120
×	2 x DH 🗆 110	G 21/2	661	39.71	2378	1400
Ban	3 x DH 🗆 108	G 21/2	793	47.65	2853	1679
Multi-Bank	3 x DH 🗆 110	G 21/2	991	59.57	3567	2100
2	4 x DH 🗆 108	G 21/2	1057	63.53	3804	2239
	4 x DH 🗆 110	G 21/2	1321	79.43	4756	2779

Stated flows are for operation at 7 bar g (100 psi g) with reference to 20° C, 1 bar a, 0% relative water vapour pressure. For flows at other pressures apply the correction factors shown.

Dryer Performance

Dryer Models	Dewpoint	t (Standard)	ISO8573-1:2010	Dewpoint	(Option 1)	ISO8573-1:2010 Classification
	°C	°F	Classification (standard)	°C	°F	(Option 1)
DH 🗆	-40	-40	Class 2	-70	-100	Class 1

Technical Data

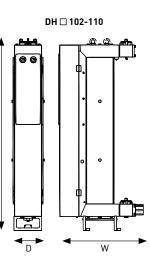
Dryer Models		erating ressure	Max Op Pr	erating ressure		Inlet Temp		a Inlet Temp	Max A	mbient Temp	Electrical supply	Electrical supply	Thread	20101
	bar g	psi g	bar g	psi g	°C	°F	°C	°F	°C	°F	(standard)	(optional)	Connections	dB (A)
DH 🗆	4	58	10.5	154	2	35	50	122	55	131	415V 3ph+N	N/A	BSPP or NPT	<75

Power Consumption

Model	Power Consumption	Full Load
Woder	KW h Average	Amps
DH 🗆 102	1.3	7.2
DH 🗆 104	2.6	14.4
DH 🗆 106	4.0	21.6
DH 🗆 108	5.3	28.8
DH 🗆 110	6.6	36
2 x DH 🗆 108	10.6	57.6
2 x DH 🗆 110	13.2	72
3 x DH 🗆 108	15.9	86.4
3 x DH 🗆 110	19.8	108
4 x DH 🗆 108	21.2	115.2
4 x DH 🗆 110	26.4	144

Heat Regenerative models have electric heaters built into the desiccant beds to further reduce purge air consumption and increase operating efficiency.

Controller Options

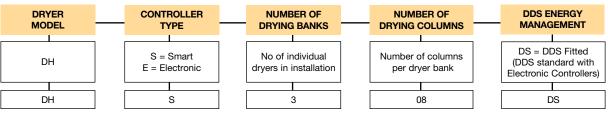

		Function												
Controller Options	Power on Indication	Fault Indication	Display Fault Condition Values	Interval	Service Countdown Timers	Comfigurable Alarm Settings	Remote Volt Free Alarm Contacts	Filter	Energy					
SMART	•	•					•							
SMART DDS	•	•					•		•					
Electronic DDS	•	•	•	•	•	•	•	•	•					

Temperature Correction Factor CFT											
	°C	25		30	35		40	45	50		
Maximum Inlet Temperature	°F	77		86	95	1(04	113	122		
	CFT	0.91		1.00	1.00	1.3	32	1.73	2.23		
Pressure Correction	Factor CFP										
	bar g	4	5	6	7	8	9	10	10.5		
Minimum Inlet Pressure	psi g	58	73	87	102	116	131	145	152		
	CFP	1.60	1.33	1.14	1.00	0.89	0.80	0.73	0.70		
		Oten dend	Outin								

Dewpoint Corre	ction Factor CFD	Standard	Option 1
	PDP °C	-40	-70
Required Dewpoint	PDP °F	-40	-100
	CFD	1.00	1.43

Weights and Dimensions

					Weight					
Model	Pipe Size	H	eight (H)	v	Vidth (W)		Depth (D)	Weight		
		mm	ins	mm	ins	mm	ins	kg	lbs	н
DH 🗌 102	G 2	1578	62.1	717	28.2	321	12.6	150	331	
DH 🗌 104	G 2	1578	62.1	947	37.3	321	12.6	245	540	
DH 🗌 106	G 21/2	1578	62.1	1177	46.3	321	12.6	325	717	
DH 🗌 108	G 21/2	1578	62.1	1407	55.4	321	12.6	440	970	
DH 🗆 110	G 21/2	1578	62.1	1637	64.4	321	12.6	565	1246	



Recommended Filtration

Model	Filter Pipe Size BSPT or NPT	Inlet General Purpose Pre-filter	Inlet High Efficiency Filter	Outlet Dust Filter
DH 🗌 102	2"	AO040H 🗆 FX	AAO40H 🗆 FX	ARO40H I MX
DH 🗌 104	2"	AO040H 🗆 FX		ARO40H I MX
DH 🗌 106	2 1⁄2"	A0050I 🗆 FX		
DH 🗌 108	2 1⁄2"	A0050I 🗆 FX	AAO50I 🗆 FX	
DH 🗆 110	2 1/2"	A0050I 🗆 FX		

= B (BSPT) or N (NPT)

Dryer Coding Example

Example: PNEUDRI model DHS308DS

PNEUDRI MX

Product Selection

				Flow	ates	
	Model	Pipe Size	L/s	m ³ /min	m ³ /hr	cfm
	MX 🗆 102C	G 2	113	6.81	408	240
¥	MX 🗆 103C	G 2	170	10.22	612	360
e Bai	MX 🗆 103	G 2	213	12.78	765	450
Single Bank	MX 🗆 104	G 2	283	17.03	1020	600
0	MX 🗌 105	G 2½	354	21	1275	750
	MX 🗆 106	G 2½	425	26	1530	900
	MX 🗆 107	G 2½	496	30	1785	1050
	MX 🗆 108	G 2½	567	34	2040	1200
	2 x MX 🗆 105	G 2½	708	43	2550	1500
	2 x MX 🗆 106	G 2½	850	51	3060	1800
ark	2 x MX 🗆 107	G 2½	992	60	3570	2100
Multi-Bank	2 x MX 🗆 108	G 2½	1133	68	4080	2400
Mu	3 x MX 🗆 106	G 21/2	1275	77	4590	2700
	3 x MX 🗆 107	G 21/2	1488	89	5355	3150
	3 x MX 🗆 108	G 21/2	1700	102	6120	3600

Stated flows are for operation at 7 bar g (100 psi g) with reference to 20°C, 1 bar a, 0% relative water vapour pressure. For flows at other pressures apply the correction factors shown.

Dryer Performance

Dryer Models	Dewpoint (Standard)		ISO8573-1:2010 Classification	Dewpoint (Option 1)		ISO8573-1:2010 Classification		wpoint otion 2)	ISO8573-1:2010 Classification	
	°C	°F	(standard)	°C	°F	(Option 1)	°C	°F	(Option 2)	
MX 🗆	-40	-40	Class 2	-70	-100	Class 1	-20	-4	Class 3	
MXP*	-40	-40	Class 2	-70	-100	Class 1	-20	-4	Class 3	

Technical Data

Dryer Models		Min erating essure		Max erating essure	Оре	Min erating Temp	Оре	Max rating Temp	Ar	Max nbient Temp	Electrical supply (standard	Electrical supply	Thread Connections	Noise Level
models	bar g	psi g	bar g	psi g	°C	°F	°C	°F	°C	°F	(Standard	(optional)	Connections	dB (A)
MXS	4	58	13	190	2	35	50	122	55	131	85 - 265 V 1ph 50/60Hz	N/A	BSPP or NPT	<75
МХА	4	58	13	190	2	35	50	122	55	131	85 - 265 V 1ph 50/60Hz	N/A	BSPP or NPT	<75
MXP*	4	58	13	190	2	35	50	122	55	131	N/A	N/A	BSPP or NPT	<75

Controller Options

		Function												
Controller Options	Power on Indication	Fault Indication	Condition		Service Countdown Timers	Comfigurable Alarm Settings	Remote Volt Free Alarm Contacts		Management					
SMART	•	•		•			•							
SMART DDS	•	•		•			•		•					
ADVANCED	•	•	•	•	•	•	•	•	•					

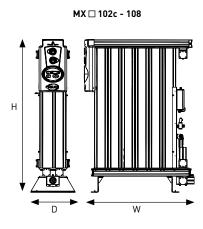
*ATEX compliant option available.

For hazardous environments , a fully pneumatic ATEX compliant version of PNEUDRI is available.

ATEX Directive 94/9/EC Group II, Category 2GD, T6.

Temperature Co	prrection Factor	CFT											
	°C		25	30		35		40	4	5	50		
Maximum Inlet Temperature	°F		77	86	95			104	11	3	122		
	CFT	1.	.00	1.00		1.00		1.04	1.1	4	1.37		
Pressure Correc	Pressure Correction Factor CFP												
	bar g	4	5	6	7	8	9	10	11	12	13		
Minimum Inlet Pressure	psi g	58	73	87	100	116	5 131	145	160	174	189		
	CFP	1.60	1.33	1.14	1.00	0.89	0.80	0.73	0.67	0.62	0.57		
Dewpoint Correction Factor CFD		O Optio	n 2	Standard	Ор	tion 1							
	PDP °C		-20	-40		-70							
Required Dewpoint	PDP °F		-4	-40		-100							

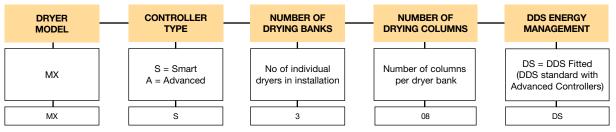
1.00


1.43

Weights and Dimensions

CFD

				Dimen	sions				Weight	
Model	Pipe Size	He	eight (H)	w	idth (W)	D	epth (D)	Holgin		
		mm	ins	mm	ins	mm	ins	kg	lbs	
MX 🗆 102C	G 2	1647	64.8	687	27.0	550	21.7	235	518	
MX 🗆 103C	G 2	1647	64.8	856	33.7	550	21.7	316	696	
MX 🗆 103	G 2	1892	74.5	856	33.7	550	21.7	355	782	
MX 🗆 104	G 2	1892	74.5	1025	40.3	550	21.7	450	992	
MX 🗆 105	G 21/2	1892	74.5	1194	47.0	550	21.7	543	1197	
MX 🗆 106	G 21/2	1892	74.5	1363	53.6	550	21.7	637	1404	
MX 🗆 107	G 21/2	1892	74.5	1532	60.3	550	21.7	731	1611	
MX 🗆 108	G 2 ¹ / ₂	1892	74.5	1701	67.0	550	21.7	825	1818	


0.91

Recommended Filtration

For Dryer Model	Filter Pipe Size BSPT or NPT	Inlet General Purpose Pre-filter	Inlet High Efficiency Filter	Outlet Dust Filter
MX 🗆 102C	2"	AO040H 🗆 FX	AA040H 🗆 FX	AR040H 🗆 MX
MX 🗆 103C	2"	AO040H FX	AA040H 🗆 FX	AR040H MX
MX 🗆 103	2"	AO045H 🗆 FX	AA045H 🗆 FX	AR045H 🗆 MX
MX 🗆 104	2"	AO045H 🗆 FX	AA045H 🗆 FX	AR045H 🗆 MX
MX 🗆 105	21⁄2"	AO050I 🗆 FX	AA050I 🗆 FX	AR050I 🗆 MX
MX 🗆 106	21/2"	AO055I 🗆 FX	AA055I 🗆 FX	AR055I 🗆 MX
MX 🗆 107	21/2"	AO055I 🗆 FX	AA055I 🗆 FX	AR055I 🗆 MX
MX 🗆 108	21/2"	AO055I 🗆 FX	AA055I 🗆 FX	AR055I 🗆 MX

Dryer Coding Example

Example: PNEUDRI model MXS308DS

PNEUDRI MPX

Product Selection

Madal	Dine Cine		Flowrates									
Model	Pipe Size	L/s	m³/min	m³/hr	cfm							
MPX 🗆 110	G 4	652	39	2346	1381							
MPX 🗆 112	G 4	782	47	2815	1657							
2 x MPX 🗆 110	G 4	1303	78	4692	2762							
2 x MPX 🗆 112	G 4	1564	94	5630	3314							
3 x MPX 🗆 110	G 4	1955	118	7038	4143							
3 x MPX 🗆 112	G 4	2346	141	8445	4971							

Stated flows are for operation at 7 bar g (100 psi g) with reference to 20°C, 1 bar a, 0% relative water vapour pressure. For flows at other pressures apply the correction factors shown.

Dryer Performance

Dryer Models	Dewpoint	t (Standard)	ISO8573-1:2010	Dewpoint	(Option 1)	ISO8573-1:2010
	°C	°F	Classification (standard)	°C	°F	Classification (Option 1)
	-40	-40	Class 2	-70	-100	Class 1

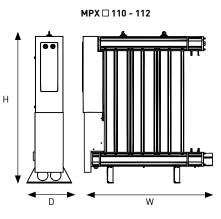
Technical Data

Dryer		erating ressure	Max Op Pi	erating ressure	Min Op	erating Temp		erating Temp		mbient Temp	Electrical supply	Electrical supply	Thread	Noise Level
Models	bar g	psi g	bar g	psi g	°C	°F	°C	°F	°C	°F	(atom dowd	d (optional)	Connections	dB (A)
МРХ 🗆	4	58	13	190	2	35	50	122	55	131	230 V 1ph 50/60Hz	110 V 1PH 50/60Hz	BSPP or NPT	<75

Controller Options

	Function										
Controller Options	Power on Indication	Fault Indication	Display Fault Condition Values	Service Interval Indication	Service Countdown Timers	Comfigurable Alarm Settings	Remote Volt Free Alarm Contacts	Filter Service Timer	DDS Energy Management System		
SMART	•	•		•			•				
SMART DDS	•	•		•			•		•		
ELECTRONIC DDS	•	•	•	•	•	•	•	•	•		

Temperature Correction Factor CFT											
	°C		25	30	35		40		4	5	50
Maximum Inlet Temperature	°F		77			95		104		3	122
	CFT	1	.00	1.00		1.00		1.04	1.14	1	1.37
Pressure Correc	Pressure Correction Factor CFP										
	bar g	4	5	6	7	8	9	10	11	12	13
Minimum Inlet Pressure	psi g	58	73	87	100	116	131	145	160	174	189
	CFP	1.60	1.33	1.14	1.00	0.89	0.80	0.73	0.67	0.62	0.57
Dewpoint Correction Factor CFD Standa			ard	Option 1							
	PDP °C		-40	-70							
Required Dewpoint	PDP °F		-40	-100							

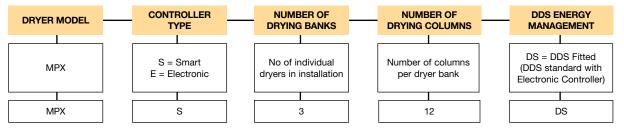

1.43

XA7 · I		D .	
Woldh	tc and	llimor	icinnc
Weigh	ts anu	DIIIICI	1210112

CFD

	Pipe Size	Dimensions							Weight	
Model		Height (H)		Width (W)		Depth (D)		Weight		
		mm	ins	mm	ins	mm	ins	kg	lbs	
MPX 🗆 110	G 4	1788	70.4	2223	87.5	550	21.7	895	1969	
MPX 🗆 112	G 4	1788	70.4	2551	100.4	550	21.7	1025	2255	

1.00



Recommended Filtration

Model	Filter Pipe Size BSPT or NPT	Inlet General Purpose Pre-filter	Inlet High Efficiency Filter	Outlet Dust Filter
MPX 110	4"	AO060K 🗆 FX	AA060K 🗆 FX	AR060K 🗆 MX
MPX 112	4"	AO060K 🗆 FX	AA060K 🗆 FX	AR060K MX

= B (BSPT) or N (NPT)

Dryer Coding Example

Example: PNEUDRI model MPXS312DS

The Parker domnick hunter design philosophy

Parker domnick hunter has been supplying industry with high efficiency filtration and purification products since 1963. Our philosophy 'Designed for Air Quality & Energy Efficiency' ensures products that not only provide the user with clean, high quality compressed air, but also with low lifetime costs and reduced carbon dioxide (CO₂) emissions.

PNEUDRI Options

DDS Energy Management Systems

Operational costs associated with providing such dry compressed air can be high. If adsorption dryers are not optimised correctly, desiccant regeneration can consume huge amounts of energy; indeed, drying costs can often be as high as 80% of total operational costs.

To address this issue, Parker domnick hunter has developed a new generation of energy efficient air dryers that allows businesses to cut operating costs and remain environmentally responsible whilst providing the highest quality compressed air. PNEUDRI desiccant air dryers can be fitted with Dewpoint Dependent Switching (DDS) energy saving controls that eliminate unnecessary desiccant regeneration cycles to provide considerable energy savings.

By directly monitoring the outlet air quality (dewpoint) of the dryer, the system can automatically extend the "drying period" beyond a normally fixed cycle time if the on-line drying chamber has adsorptive capacity remaining.

As compressed air systems rarely operate at full rated capacity all of the time (eg during shift work and periods of low demand), this energy management system can provide considerable savings.

During this extended period of energy free drying, no purge air energy is consumed for regeneration.

DDS Energy Saving (Heatless Dryer example shown)

Air Demand %	Energy Saving %	Energy Saving P/A Kw	Environmental Saving P/A Kg CO ₂
100	33.00	95,040	50,371
90	40.00	115,200	61,056
80	47.00	135,360	71,741
70	53.00	152,640	80,899
60	60.00	172,800	91,584
50	66.00	190,080	100,742

System pressure 6 bar g. Max Temp 35°C. System flow 1700 m³/hr (1000 cfm). Average pressure 6.5 bar g. Average Temp 30°C.

PNEUDRI for hazardous environments

Where clean, dry compressed air is required in hazardous environments, e.g. petrochemical and offshore oil & gas applications, Parker domnick hunter can supply fully pneumatic ATEX compliant PNEUDRI dryers.

ATEX Directive 94/9/EC Group II, Category 2GD, T6

Flow Control Devices for multi-banked dryers

To prevent overflowing your compressed air system and to assist in maintaining pressure dewpoint, Flow Control Devices (FCD's) are available for multi-banked PNEUDRI DH, PNEUDRI MX and PNEUDRI MPX models.

For a set flowrate, air will flow through a uniform pipe at a constant velocity, however, the velocity will increase if there is a reduction in the pipe diameter. If the pipe diameter is further decreased, the air flow will continue to increase to a maximum velocity.

FCD's or sonic nozzles will restrict the airflow to 125% of the dryers rated flow and any further attempt to increase the airflow will cause "choking" and a very high pressure drop.

Please contact Parker domnick hunter for further information.

Benefits

- Prevents significant overflow of the dryer.
- Helps to maintain a constant outlet pressure dewpoint.
- Indicates by high pressure drop when system demand exceeds rated capacity.

Aftermarket

Compressed air equipment users demand much more than the supply of high quality products in order to maintain a competitive edge.

Modern production technology is increasingly demanding the provision of a higher purity and more reliable compressed air supply. Products and solutions that are manufactured by Parker domnick hunter are designed to provide air quality that meets with and often exceeds international standards.

As well as the requirement for air purity and reliability, there are additional factors to consider when choosing the right service provider for your compressed air and gas purification system. For example, knowledge of the many regulations regarding the management of industrial waste, energy efficiency improvement programs and consideration of any environmental impact. It is anticipated that future legislations will demand further in-depth technical and knowledge-based support from service providers. Our commitment to industry does not stop with the supply of high quality products. We are also committed to ensuring that our equipment provides high performance by providing a trouble-free service from a bespoke maintenance and verification package – all tailored to your own specific requirements.

We offer a wide range of valuable services that will impact positively on your drive towards improved production efficiency and product quality with reduced production rejections and operational costs.

From initial selection to installation, commissioning, preventative maintenance and specialised services, Parker domnick hunter is redefining customer service.

Parker's Motion & Control Technologies

Parker is guided by a relentless drive to help our customers become more productive and achieve higher levels of profitability by engineering the best systems for their requirements. It means looking at customer applications from many angles to find new ways to create value. Whatever the motion and control technology need, Parker has the experience, breadth of product and global reach to consistently deliver. No company knows more about motion and control technology than Parker. For further info call 00800 27 27 5374.

AEROSPACE Key Markets

- Aircraft engines
- Business & general aviation
- Commercial transports
- Land-based weapons systemsMilitary aircraft
- Missiles & launch vehicles.
- Regional transports
- Unmanned aerial vehicles

Key Products

- Flight control systems & components
- Fluid conveyance systems
- Fluid metering delivery
- & atomization devices
- Euel systems & components
- · Hydraulic systems & components
- · Inert nitrogen generating systems
- Pneumatic systems & components
- Wheels & brakes

CLIMATE CONTROL

- Key Markets
- Agriculture
- Air conditioningFood, beverage & dairy
- Life sciences & medical
- Precision cooling
- Processing
- Transportation

Key Products

- CO2 controls
- Electronic controllersFilter driers
- Hand shut-off valves
- Hose & fittings
- Pressure regulating valves
- Befrigerant distributors
- · Safety relief valves
- Solenoid valves

PNEUMATICS

Key Markets

Factory automation

Life science & medical

· Packaging machinery

Transportation & automotive

• Food & beverage

• Machine tools

Key Products

• Grippers

Manifolds

Air preparation

· Compact cylinders

· Guided cylinders

Miniature fluidics

· Rodless cylinders

· Rotary actuators

Tie rod cylinders

· Field bus valve systems

Pneumatic accessories

Pneumatic actuators & grippers

· Pneumatic valves and controls

Vacuum generators, cups & sensors

· Conveyor & material handling

Aerosnace

· Thermostatic expansion valves

FILTRATION

Key Markets

•

• Marine

Food & beverage

Life sciences

Oil & gas

Process

Key Products

& systems

coolant filters

air generators

SEALING & SHIELDING

Chemical processing

Kev Markets

Aerospace

Consumer
 Energy, oil & gas

· Fluid power

Life sciences

Semiconductor

• Transportation

Key Products

· Dynamic seals

EMI shielding

· Elastomeric o-rings

• Extruded & precision-cut,

· Homogeneous & inserted

elastomeric shapes

Metal & plastic retained

composite seals • Thermal management

ENGINEERING YOUR SUCCESS.

· High temperature metal seals

fabricated elastomeric seals

Military

· General industrial

Information technology

Telecommunications

Industrial machinery

Mobile equipment

Power generation

Analytical gas generators

Compressed air & gas filters Condition monitoring

Engine air, fuel & oil filtration

Hydraulic, lubrication &

Process, chemical, water

Nitrogen, hydrogen & zero

& microfiltration filters

Transportation

ELECTROMECHANICAL

- Aerospace
- Factory automation
- Food & beverage
- Life science & medical
- Machine tools
- Packaging machinery
 Paper machinery
- Paper machinery
 Plastics machinery & converting
- Primary metals
- Semiconductor & electronics
- Textile
- Wire & cable

Key Products

- AC/DC drives & systems
- Electric actuators
- Controllers

•

.

- Gantry robots
- Gearheads
 Human machine inter
 - Human machine interfaces Industrial PCs
 - Inverters
- Linear motors, slides and stages
- Precision stages
- Stepper motors

PROCESS CONTROL

Chemical & refining

· Medical & dental

• Microelectronics

· Power generation

Key Products

• Oil & gas

Food, beverage & dairy

Analytical sample conditioning

· Fluoropolymer chemical delivery

fittings, valves & pumps

High purity gas delivery fittings,

· Instrumentation fittings, valves

· Medium pressure fittings & valves

products & systems

valves & regulators

· Process control manifolds

& regulators

Key Markets

- Servo motors, drives & controls
 Structural extrusions
- Suuciulai extrusionis

FLUID & GAS HANDLING

- Key Markets
- Aerospace
- Agriculture
- Bulk chemical handlingConstruction machinery
- Food & beverage
- Fuel & gas delivery
- Industrial machinery
- Mobile
- Oil & gas
- Transportation
- Welding

Key Products

- Brass fittings & valves
- Diagnostic equipment
- · Fluid conveyance systems
- Industrial hose
- PTFE & PFA hose, tubing & plastic fittings
- Rubber & thermoplastic hose & couplings

- Tube fittings & adapters
- Quick disconnects

HYDRAULICS

- **Key Markets**
- Aerospace
- Aerial lift
- Agriculture
- Construction machinery
- Forestry
- Industrial machinery
- MiningOil & gas

Key Products

- Power generation & energy
- Truck hydraulics

· Diagnostic equipment

& accumulators

Hydraulic motors & pumps

· Hydraulic valves & controls

Rubber & thermoplastic hose

· Hydraulic cylinders

Hvdraulic systems

· Power take-offs

& couplings

Quick disconnects

· Tube fittings & adapters

Parker Worldwide

AE – UAE, Dubai Tel: +971 4 8127100 parker.me@parker.com

AR – Argentina, Buenos Aires Tel: +54 3327 44 4129

AT – Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT – Eastern Europe, Wiener Neustadt Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AU – Australia, Castle Hill Tel: +61 (0)2-9634 7777

AZ – Azerbaijan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BR – Brazil, Cachoeirinha RS Tel: +55 51 3470 9144

BY – Belarus, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CA – Canada, Milton, Ontario Tel: +1 905 693 3000

CH – Switzerland, Etoy Tel: +41 (0)21 821 87 00 parker.switzerland@parker.com

CL – Chile, Santiago Tel: +56 2 623 1216

CN – China, Shanghai Tel: +86 21 2899 5000

CZ – Czech Republic, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE – Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK – Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES – Spain, Madrid Tel: +34 902 330 001 parker.spain@parker.com **FI – Finland,** Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com

FR – France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR – Greece, Athens Tel: +30 210 933 6450 parker.greece@parker.com

HK – Hong Kong Tel: +852 2428 8008

HU – Hungary, Budapest Tel: +36 1 220 4155 parker.hungary@parker.com

IE – Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IN – India, Mumbai Tel: +91 22 6513 7081-85

IT – Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

JP – Japan, Tokyo Tel: +81 (0)3 6408 3901

KR – South Korea, Seoul Tel: +82 2 559 0400

KZ – Kazakhstan, Almaty Tel: +7 7272 505 800 parker.easteurope@parker.com

MX – Mexico, Apodaca Tel: +52 81 8156 6000

MY – Malaysia, Shah Alam Tel: +60 3 7849 0800

NL – The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO – Norway, Asker Tel: +47 66 75 34 00 parker.norway@parker.com

NZ – New Zealand, Mt Wellington Tel: +64 9 574 1744

PL – Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com **PT – Portugal,** Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO – Romania, Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

RU – Russia, Moscow Tel: +7 495 645-2156 parker.russia@parker.com

SE – Sweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SG – Singapore Tel: +65 6887 6300

SK – Slovakia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL – Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TH – Thailand, Bangkok Tel: +662 717 8140

TR – Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

TW – Taiwan, Taipei Tel: +886 2 2298 8987

UA – Ukraine, Kiev Tel +380 44 494 2731 parker.ukraine@parker.com

UK – United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

US – USA, Cleveland Tel: +1 216 896 3000

VE – Venezuela, Caracas Tel: +58 212 238 5422

ZA – South Africa, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

European Product Information Centre Free phone: 00 800 27 27 5374 (from AT, BE, CH, CZ, DE, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PT, SE, SK, UK)

©2011 Parker Hannifin Corporation. All rights reserved. Catalogue: 174004406_00_EN 02/11

Parker Hannifin Ltd. domnick hunter Industrial Division Dukesway, Team Valley Trading Estate Gateshead, Tyne and Wear England NE11 0PZ Tel: +44 (0)191 402 9000 Fax: +44 (0)191 482 6296 www.domnickhunter.com